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Abstract. Inelastic neutron scattering from a single crystal of the quasi-two-dimensional
antiferromagnet MnPS3 has been used to measure the spin wave dispersion curve at 4 K.
The exchange integrals were subsequently calculated from linear spin wave theory. The values
J1 = −0.77 meV,J2 = −0.07 meV,J3 = −0.18 meV andJ ′ = 0.0019 meV are within stability
conditions calculated from mean-field theory. In addition, the critical behaviour of the gap in the
spin wave energy at the Brillouin zone centre has been measured, and compared to the critical
behaviour of the magnetization from neutron scattering data of the magnetic (020) Bragg peak.
The gap varies with magnetization forT < 0.96 TN , and with the square of the magnetization
for T > 0.96 TN . Two possible explanations are proposed: a competition between single-ion
and dipolar anisotropies; or a crossover toXY -like excitations.

1. Introduction

There have been many studies of the quasi-low-dimensional MPX3 systems (M= transition
metal; X = S, Se) in a wide variety of research fields. These materials are quasi-two-
dimensional atomically and magnetically, with layer planes held together by van der Waals
forces. The low-dimensional magnetic nature makes these materials of interest for the
studies of phase transitions and critical excitations. An added point of interest in these
studies is that the weak interplanar atomic bonding allows easy intercalation into these
compounds of a wide variety of materials; including lithium and many organic molecules.
Intercalation has a dramatic effect on the magnetic and critical properties of these materials;
however before these effects can be fully understood it is necessary to understand the nature
of these properties in the parent material.

MnPS3 is an example of these systems. It is monoclinic, with theC2/m space group.
The lattice parameters have been determined to bea = 6.077Å, b = 10.524Å, c = 6.798Å,
and angleβ = 107.35◦ (Ouvrardet al 1985) with the Mn atoms in (4g) sites, the P atoms in
(4i) sites and the S atoms in (4i) and (8j) sites. The magnetic susceptibility of this material
is best described by a two-dimensional Heisenberg model, and as such MnPS3 should not
order at a finite temperature. In reality, it orders into an antiferromagnetic structure below
the Ńeel temperature of 78 K. This structure was first determined using neutron powder
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diffraction by Kurosawaet al (1983). The magnetism is due to theS = 5/2 manganese
atoms, which lie in a honeycomb arrangement in theab planes. In the ordered state, the
moments on the manganese atoms align perpendicularly to these planes. Figure 1(a) shows
the atomic structure and figure 1(b) the magnetic structure.

(a) (b)

Figure 1. Atomic (a) and magnetic structure (b) of MnPS3. In (a), the structure is viewed with
thec-axis almost perpendicular to the paper, but turned 2 degrees around thea-axis and 1 degree
around theb-axis for illustrative purposes. The dashed lines in (a) shows the crystallographic
unit cell. In (b), the structure is viewed with theb-axis almost perpendicular to the paper, but
turned 15 degrees around thec-axis and 15 degrees around thea-axis for illustrative purposes.
Part of this diagram was produced with ATOMS, by Shape Software.

The magnetic properties have been investigated by many experimental techniques such
as magnetic susceptibility, electron paramagnetic resonance (Okudaet al 1986, Joy and
Vasudevan 1992, 1993) and nuclear magnetic resonance (Torre and Ziolo 1989). These
authors have given estimates for the magnetic exchange between nearest neighbours both
within and between planes. The results from these authors are not necessarily consistent. In
addition, Pich and Schwabl (1995) have presented a theoretical calculation for the spin wave
dispersion spectrum in isotropic two-dimensional honeycomb antiferromagnets. Thus it is
the aim of this work to measure the spin wave dispersion curve and quantify the magnetic
exchange integrals in MnPS3.

The experimental technique required to unambiguously determine magnetic exchange
integrals and spin wave dispersion is neutron inelastic scattering. Up until now it has been
extremely difficult to do such experiments on this system because of the lack of single
crystals of suitable size. The crystal used in this study was grown using a new technique,
and was large enough for inelastic and diffuse neutron scattering experiments (Wildeset al
1998). The spin wave dispersion at 4 K has subsequently been measured and the exchange
integrals were calculated by a least-squares fit to the data using linear spin wave theory.

Finally, as a prelude to further measurements on the critical scattering from this material
the critical exponent of the magnetization belowTN, β, has been found by measuring the
temperature dependence of the magnetic intensity of the (020) Bragg peak. This was
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compared to the critical behaviour of the spin wave energy at the Brillouin zone centre as
a function of temperature to ascertain the nature of the anisotropy.

2. The sample

Previously samples of this material have been prepared by a vapour deposition technique
(Kurosawaet al 1983) or by direct heating of the base elements (Ouvrardet al 1985).
These methods typically give powders, or platelike crystals large in two dimensions but
very small in the third (≈ 10× 10× 0.1 mm3). A new method was attempted to grow a
crystal large enough for neutron scattering measurements.

The crystal was grown in a silica ampoule, approximately 120 mm in length and 15 mm
internal diameter, with a conical tip. The ampoule was partially filled with a 1:1:3 ratio
of Mn powder (4.524 g), P powder (2.551 g) and S flakes (7.923 g); all of 99.99% purity.
All handling of the materials was performed under a dry N2 atmosphere. The ampoule
was pumped to 10−6 Torr, left overnight and then sealed. The ampoule was then loaded
into a Bridgeman–Stockbarger resistive heated furnace controlled by a Eurotherm 900 EPC
temperature controller. The upper zone was set to 900◦C and the lower zone to 635◦C,
giving a nominal thermal gradient of 1◦C mm−1 and a temperature stability of±0.3 ◦C.
The ampoule was lowered through these zones at 0.25 mm h−1 for 20 days. The furnace
was then cooled to room temperature at 20◦C h−1. A mass of crystals was obtained that
had the green colour characteristic of MnPS3. The best of these was 12× 10× 4 mm3, and
was shown by x-ray Laue diffraction to be a single crystal with theC2/m space group.

3. The experiments

Neutron scattering experiments on two separate instruments were necessary in order to
measure the spin wave dispersion curve in MnPS3. The instruments used were the IN14
and IN3 triple-axis spectrometers, both at the Institut Laue–Langevin, France.

IN14 is a cold neutron triple-axis spectrometer and as such it is optimized for
measurements at small energy transfers. This instrument was used to measure the behaviour
of the spin wave gap at the Brillouin zone centre as a function of temperature, the spin wave
dispersion along the [00ξ ] direction whereξ is a reduced lattice unit and the spin wave
dispersion along the [0ξ0] direction for ξ < 0.5. The monochromator and analyser were
pyrolytic graphite, and a cooled beryllium filter was used between sample and analyser
to filter high-order wavelengths. Collimators with 40′ divergence were used between
monochromator and sample, sample and analyser, analyser and detector. All measurements
were carried out with the momentum transferQ fixed, with kI varying to measure energy
transfers. The final neutron wave vectorkF was fixed between 1.1 and 1.5̊A−1 (2.507 and
4.662 meV respectively), the smallerkF being necessary for high-resolution measurements.

Even with high resolution, scans close to the Brillouin zone centre reveal an asymmetric
lineshape characteristic of the four-dimensional convolution of the dispersion surface with
the resolution of the instrument. The spin wave energies were found in a least-squares fit
procedure that correctly convoluted a fitted dispersion surface with the resolution volume
by means of a Monte Carlo method. An example of the fit to the energy of the Brillouin
zone centre is given in figure 2.

IN3 is a thermal neutron triple-axis spectrometer, and it was necessary to use
this instrument to measure energy transfers greater than 5 meV. The spin wave
dispersions along the [0ξ0] and [ξ00] directions were measured using this instrument.
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Figure 2. Fitted lineshape (filled circles) of the dispersion relation convoluted with the
instrument resolution to the experimental data at the (020) position (open circles), temperature=
4 K. The fluctuations in the fit are due to statistics from the Monte Carlo routine.

A copper(111) monochromator and pyrolytic graphite(002) analyser were used, with higher-
order wavelength contamination being filtered with pyrolytic graphite between sample and
analyser. All measurements were carried out at constantQ and kF fixed at 2.662Å−1

(14.682 meV). When the spin wave dispersion had little gradient the measurements were
carried out with no collimation and a horizontally curved analyser. BetterQ resolution was
required when the dispersion gradient was greater, and consequently these measurements
were carried out using a flat analyser and with 40′ collimation between the sample and
analyser, and between analyser and detector.

The measurements on IN3 were at points of the dispersion curve without pronounced
Q dependence in the dispersion surface, and consequently it was sufficient to fit a Gaussian
to the data to find the spin wave energy.

The intensity of the (020) Bragg peak was measured as a function of temperature
on the TAS7 neutron triple-axis spectrometer at the DR3 reactor at Risø National
Laboratory, Denmark. This is also a cold neutron spectrometer, and was used to measure
elastic scattering. The monochromator was pyrolytic graphite. High-order wavelength
contamination was filtered using cooled beryllium. Very coarse collimation divergence, 2◦,
was used before and after the sample. After careful alignment of the crystal using a pyrolytic
graphite analyser, the analyser was removed and the (020) Bragg peak was measured at
various temperatures by scanning along [0ξ0]. The integrated intensity could then be
calculated by trapezoidal summation and then subtracting an estimate for the background.

4. The spin wave dispersion

The measured spin wave dispersion spectrum is given in figure 3. The Brillouin zone and
associated measurement directions are given in the inset of this figure.
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Figure 3. The spin wave dispersion in MnPS3 along various high-symmetry directions. The
directions in question are shown in the inset of the diagram.

The theoretical calculations of Pich and Schwabl (1995) predict a gap in the spin wave
energy at the Brillouin zone centre of a magnitudeE0 = 1.6 meV and a splitting of
the degeneracy of the spin wave branches, based on the hypothesis that a dipole–dipole
interaction alone is responsible for the long-range magnetic ordering. As can be seen in
the measured data, there is a small gap of magnitudeE0 = 0.5 meV and, to within the
resolution of the measurement, there is no splitting in the degeneracy. There is also small
dispersion along the [00ξ ] direction. Thus, long-range magnetic ordering is more likely due
to a combination of the magnetic exchange between the planes and whatever is responsible
for the small anisotropy.

The dispersion can easily be fitted using the linear spin wave theory described by Keffer
(1966). This theory accounts for anisotropy in the spin wave dispersion by introducing
an easy-axis term−gµBHA

∑
l S

z
l into the Hamiltonian, rather than the dipole–dipole

interaction of Pich and Schwabl (1995). Inspection of the dispersion equations of Pich
and Schwabl (Pich, private communication), however, reveals that for small anisotropy the
dispersion relations calculated with the two Hamiltonians are approximately equivalent. The
dispersion relation calculated by the method of Keffer is simpler, and consequently was the
relation used to model the data.

To obtain reasonable agreement between calculated and measured dispersions it was
necessary to include up to the third-nearest neighbours in the plane. In the absence of an
external magnetic field the equation for MnPS3 is
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J1, J2 and J3 are exchange integrals between first-, second- and third-nearest in-plane
neighbours respectively andJ ′ is the exchange between planes;h, k and l are the Miller
indices of the scattering vector andHA is the effective field due to anisotropy. This equation
was then fitted to the data to obtain the values ofJ1−3 and J ′. The fitted parameters are
given in table 1.

Table 1. Values of the exchange integrals and the anisotropy in MnPS3, as determined by the
fit of equation (1) to figure 3.

J1 J2 J3 J ′ gµBHA
S (meV) (meV) (meV) (meV) (meV)

2.5 −0.77 −0.07 −0.18 0.0019 0.0086
±0.09 ±0.03 ±0.01 ±0.0002 ±0.0009

Prior to this study, the value of the nearest-neighbour exchangeJ1 had been estimated
from magnetic susceptibility measurements. It has been calculated to be−0.82±0.02 meV
(Okudaet al 1986) and−0.78 meV (Joy and Vasudevan 1992) in analyses by molecular
field theory, to be−0.70 meV in analysis by high-temperature series expansion (Joy and
Vasudevan 1992, 1993) , and the magnitude to be 0.17 meV by nuclear magnetic resonance
(Torre and Ziolo 1989). In mitigation, the last value should be considered an average over
exchange integrals from further neighbours. Nevertheless, the spread in values is significant.

Likewise, the strength of the interlayer coupling and hence the validity of the
approximation of two-dimensionality in this sample was subject to widely different
estimates. Joy and Vasudevan (1993) have calculated the interlayer exchange constant
J ′ = 0.0013 meV from a mean field treatment of the magnetic susceptibility with the ratio
|J ′/J1| = 0.0037. This contrasts sharply with the ratio|J ′/J1| ≈ 0.4 calculated from
electron spin resonance measurements by Okudaet al (1986).

The measuredJ exchange integrals presented here agree well with some of the
previously quoted values.J1 is very close to one of the values stated by Joy and Vasudevan
(1992). J ′ is very close to the value stated by the same authors (1993).

Rastelli et al (1979) have calculated in a mean-field approximation the values of the
exchange integrals necessary for the stability of magnetic ordering in layered transition
metal compounds atT = 0 K. Mean-field approximations are generally not applicable to
two-dimensional materials. However, the authors state that a classical approximation will
hold at very low temperatures, and any quantum effects will act to blur the predicted phase
boundaries rather than refute the general validity of the theory. MnPS3 has spin 5/2 and is
therefore more classical than quantum, and in addition the magnetic Bragg peak intensities
as determined by neutron powder diffraction (Kurosawaet al 1983) may be fitted with a
mean-field Brillouin function forS = 5/2. Consequently, the stability conditions of Rastelli
et al (1979) can be applied.

The stability conditions for a honeycomb lattice with Heisenberg-like interactions and
the magnetic structure of ordered MnPS3 are:

J3 6 −J1

2J2 > J1.

The values ofJ1−3 presented here are easily bounded by these inequalities, showing that
the calculated exchange integrals are physical and consistent with the magnetic structure.

In addition, equations can be derived from mean-field theory to calculate the Néel
temperatureTN and Curie pointθ from the values ofS andJ1−3. For MnPS3 these equations
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are:

θ = 2
3S(S + 1)(3J1+ 6J2+ 3J3)/kB

TN = 2
3S(S + 1)(−3J1+ 6J2− 3J3)/kB.

(2)

These equations give a value ofTN = 164 K andθ = −221 K. Different authors have
quoted the Curie point to be−230± 5 K (Okudaet al 1986),−220 K (Kurosawaet al
1983) and−160 K (Joy and Vasudevan 1992). The calculated Curie constant is very close
to two of these three values. The calculated Néel temperature is approximately twice as
large as the measured value. This is not surprising as the mean-field calculation ofTN is
always too high for a material which exhibits strong critical fluctuations. Low-dimensional
critical fluctuations are very strong in this material (Wildeset al 1998), and are the subject
of further studies.

While the dispersion relations of Pich and Schwabl were not used to fit the data and
are not necessary to accurately determine the exchange integrals, it is useful to return to
them to ascertain the role of the dipole–dipole interaction in this material. An estimate of
the strength of the dipole–dipole interaction may be extracted from their estimate for the
magnitude of the spin wave gap:

E0 = 2S[2(Azz0 − Āzz0 − Axx0 + Āxx0 )|J |z]1/2 (3)

where |J | is the strength of the nearest-neighbour exchange,z is the number of nearest
neighbours,Aαβq is the Fourier transform of the dipole-dipole interaction between members
of thesamesublattice andĀαβq is the Fourier transform of the interactionbetweensublattices.
The dipole–dipole interaction used in the calculation of Pich and Schwabl (1995) is:

A
αβ

ll′ =
1

2
(gµB)

2

(
3(xl − xl′)α · (xl − xl′)β

|xl − xl′ |5 − δαβ

|xl − xl′ |
)
. (4)

In Fourier transforming equation (4) the magnitudes ofA
αβ
q and Āαβq are given by (gµB)2

multiplied by the appropriate summation over the lattice. This term is therefore the only free
parameter in determining the strength of any dipole–dipole interaction. Using the measured
E0 and the calculated value for|J | from table 1, this magnitude may be calculated from
equation (3) to be(gµB)2 = 0.0534 meVÅ3, much smaller than that expected. Substitution
of this value into the dispersion relations of Pich and Schwabl (Pich, private communication)
verify that, to within instrumental resolution, no splitting would have been observed. Indeed,
this calculation gives a dispersion identical to that of a similar calculation using equation (1)
with an appropriate value ofgµBHA. Thus, while the exchange integrals may be accurately
determined from fitting an equation derived by linear spin wave theory to the measured
dispersion, the nature of the anisotropy cannot.

In addition to their calculation of the expected spin wave dispersion curve, Pich and
Schwabl (1995) also calculated the Néel temperature using the calculated strength of
the dipole–dipole interaction and one of the previous estimates of the nearest-neighbour
exchange interaction. The derived equation was given byTN ∼= |J |/ ln(|J |/E0), and for
|J | = 0.78 meV the calculated value for the Néel temperature wasTN = 73 K, in agreement
with the measured value of 78 K. When the current experimental values for|J | andE0 are
substituted into this equation the calculation yieldsTN = 1.783 meV= 20.7 K, well below
the measured value. This suggests that the dipole–dipole interaction is not as important in
stabilizing long-range ordering in this material as previously thought.
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5. The critical behaviour belowTN , and the nature of the spin wave gap

One of the most direct methods of measuring the critical exponent of the magnetization,
β, is by magnetic elastic scattering (Collins 1989). The magnetic Bragg peak intensity as
measured by neutrons is proportional to the square of the perpendicular component of the
magnetization to the scattering vector, i.e.

dσ

d�
∝ 〈M⊥(Q)〉2

whereM is the magnetization, the angular brackets represent a configurational and thermal
average and the subscript represents the perpendicular component of the magnetization to the
scattering vector. The (020) peak is of particular interest because the magnetic scattering
will be sensitive to the full magnetization, the direction of the magnetic moments being
perpendicular to the scattering vector. The (020) magnetic Bragg peak intensity close toTN
will therefore vary with temperature according to the relation:

dσ

d�
= B1

[
TN − T
TN

]2β

. (5)

The magnetic intensities as a function of temperature and the fit to equation (5) are shown
in figure 4. The value of the critical exponent for the magnetization has been determined
to beβ = 0.25± 0.01.

Figure 4. A log–log plot showing the magnetic Bragg peak intensity at the (020) position as a
function of reduced temperature and the fit of equation (5) to the data. The slope of this line is
2β whereβ is the critical exponent of the magnetization.

It is interesting to note that this value is very close to the expected critical exponent
from a 2DXY model, β = 0.23 (Bramwell and Holdsworth 1993), which suggests that
the fluctuations are planar in character. This is somewhat surprising, as the moments point
perpendicular to theab planes which suggests a uniaxial anisotropy. There is, however,
some further evidence to support planar fluctuations. Electron spin resonance measurements
(Okudaet al 1986, Clearyet al 1986) show a small single-ion anisotropy that favours the
spins to lie in theab plane. Neutron powder diffraction aboveTN has revealed broad peaks
that were attributed to rodlike scattering in reciprocal space (Wildeset al 1994). While
these rods have subsequently been shown to be due to critical fluctuations (Wildeset al
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1998), comparisons of the peak heights showed the moments to be lying in theab planes.
Further critical scattering experiments are planned on this material to examine in more depth
the nature of the fluctuations.

In an attempt to examine the nature of the anisotropy in this system the gap in the spin
wave energies has also been measured as a function of temperature. All the magnetic Bragg
peaks appear at existing nuclear Bragg peak positions. There is therefore some difficulty
in measuring the spin wave gap at temperatures close to the Néel temperature, as the
contamination caused by the nuclear Bragg peak makes measuring small energy transfers
very difficult. As can be seen from figure 3 there is a very small dispersion along the
[00ξ ] direction. The spin wave gap was therefore measured at the reciprocal space position
(0 2 0.05), at which point the energy of the spin waves is practically the same as that at the
Brillouin zone centre.

A four-dimensional convolution of the resolution function with the spin wave dispersion
surface was again attempted to determine the energy of the spin wave gap, and was
reasonably successful for small temperatures. Unfortunately, close to the Néel temperature
the peak in the inelastic scattering became lost in the resolution-broadened incoherent
scattering, and consequently the fit results became unreasonable. As an approximation,
the resolution was convoluted with an isotropic dispersion surface, and the incoherent
component was approximated using a Gaussian. As the measurements are essentially at the
Brillouin zone centre, the gradient of the spin waves was chosen to be small, approximately
0.5 meV (rlu)−1. The scattering calculated using this approximation agreed reasonably well
with the measured scattering. The spin wave gap could then be determined close to the
Néel temperature by fitting the long ‘tail’ to the inelastic scattering.

What is sought in this analysis is an exponent similar and comparable to the critical
exponentβ determined above. The approximations detailed should make little difference to
the determination of such an exponent, as any systematic errors in the fitting procedure will
change the magnitude of the results but not the power-law behaviour. Comparison of the
exponents calculated from the approximated fit to those of the more rigorous convolution
with an anisotropic dispersion at low temperatures showed this to be the case.

The width of the inelastic scattering can also be used to investigate critical behaviour.
Unfortunately the values for the widths returned from the fitting procedure proved
unsatisfactory for this purpose. Although the shape of the scattering changes with
temperature no distinction can be made between the temperature variation due to the
broadening of the inelastic scattering and anisotropic temperature variation in the dispersion
surface itself. It suffices to say that the calculated widths increase with increasing
temperature, as is expected.

The gap in the spin wave energy calculated using the approximation is shown in figure
5, plotted against the reduced temperature. A power law was fitted to the data:

E0 = B2

[
TN − T
TN

]c
. (6)

Inspection of figure 5 shows that there appear to be two values ofc with a cross-over point
at aboutT = Tcross = 0.96 TN . For T < Tcross the exponentc = 0.26± 0.02 compares
favourably withβ. For T > Tcross the exponentc = 0.51± 0.02 is double the value below
Tcross and equal to the value of the exponent determined for the temperature behaviour of
the magnetic Bragg peak intensity, 2β. It can therefore be said that the spin wave gap
varies with the magnetisation belowTcross , and with the square of the magnetization above
Tcross .



6426 A R Wildes et al

Figure 5. A log–log plot showing the spin wave energies at the Brillouin zone centre as a
function of temperature and the fit of two power laws to the data. The exponent changes from
c = β, where the gap varies as the magnetization, toc = 2β, where the gap varies as the
squared magnetization, at temperatureTcross = 0.96 TN .

A variation of the spin wave gap with magnetization has been seen before in a variety
of 2D materials, in particular square-lattice antiferromagnets, an excellent review of which
is given by Arts and de Wijn (1990). Temperature dependence in the spin wave dispersion
is attributed to interactions between spin waves, which may be taken into account in theory
by expanding the spin operators to higher order. In this way, it is possible to show that in
quadratic layer antiferromagnets the spin wave gap will vary with the magnetization both
for a single-ion anisotropy (Nagata and Tomono 1974) and for dipole–dipole anisotropy
(van Uijen and de Wijn 1984). While no such theories exists for honeycomb structures, it is
reasonable to suggest that one is feasible. It is thus difficult to categorically state the nature
of the anisotropy in MnPS3 based on the low-temperature behaviour of the spin wave gap.

A variation of the spin wave gap with the squared magnetization is less common in
low dimensions, although this effect has been seen in another 2DS = 5/2 system, KFeF4
(Fulton et al 1994). At this point there appears to be no theory to explain this.

A change in the behaviour of the spin wave gap is not unprecedented, nor is it outside
the scope of current theories. Both the theories of Nagata and Tomono (1974) and van Uijen
and de Wijn (1984) collapse forT > 0.5 TN , above which temperature magnon–magnon
interactions become increasingly important. Okudaet al (1986) have reported both single-
ion and dipolar anisotropies of comparable magnitude in MnPS3 based on antiferromagnetic
resonance measurements at 4.2 K and considered the resultant anisotropy to be due to a
competition between these two effects. Keffer (1966) has summarized the classical theories
to predict the effect of temperature on anisotropy, showing a power-law relation between the
anisotropy and the magnetization. While the exponents calculated by these theories do not
match those observed in this study, it can be shown that the variation of the anisotropy with
magnetization can change with temperature, and that this temperature dependence depends
on the nature of the anisotropy. It is therefore possible that the observed behaviour of
the spin wave gap reflects the competition between the two anisotropies, which may have
different temperature dependence and which may influence the nature of magnon–magnon
interactions at temperatures close toTN , resulting in the observed cross-over.
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A second possibility is suggested by the critical exponent of the magnetization, which
as mentioned above appears to fit in to anXY -like universality class. TrueXY systems
should show a ‘Kosterlitz–Thouless’ phase transition (Kosterlitz and Thouless 1973) at
a temperatureTKT . In a quasi-2DXY system there will be some transition to long-
range 3D ordering at a temperature slightly higher thanTKT due to finite interplanar
coupling (Regnault and Rossat-Mignod 1990 and references therein). In such systems,
at temperatures close toTKT the magnetization is expected to drop steeply with temperature
and a discontinuous decrease is expected in the spin wave gap. Such behaviour has been seen
in a quasi-2DXY material with a honeycomb magnetic structure, BaNi2(PO4)2 (Regnault
and Rossat-Mignod 1990). It is true that in MnPS3 the variation of magnetization with
temperature is constant over the entire temperature range; however it may be possible that
Tcross indicates a cross-over to excitations of a Kosterlitz–Thouless nature. Further critical
scattering measurements of the excitations in this system are planned to investigate this
question further.

6. Conclusions

The spin wave dispersion spectrum has been measured in MnPS3, and could easily be
modelled with linear spin wave theory if the equation included exchange interactions up to
the third-nearest neighbour in the plane. The values of the exchange integrals correspond
with those determined by previous authors using other methods. A spin wave gap was
detected at the Brillouin zone centre, and this was measured as a function of temperature
up to the Ńeel point. It was found to decrease with the magnetization far fromTN , and to
decrease with magnetization squared close toTN , although the reason for this is not certain.
The critical exponent of the magnetization was determined to beβ = 0.25± 0.01.
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